Basic Mathematics

Factorising Expressions

R Horan \& M Lavelle

The aim of this document is to provide a short, self assessment programme for students who wish to acquire a basic competence at factorising simple algebraic expressions.

Copyright © 2001 rhoran@plymouth.ac.uk, mlavelle@plymouth.ac.uk
Last Revision Date: November 16, 2001
Version 1.1

Table of Contents

1. Factorising Expressions (Introduction)
2. Further Expressions
3. Quadratic Expressions
4. Quiz on Factorisation

Solutions to Exercises
Solutions to Quizzes

1. Factorising Expressions (Introduction)

Expressions such as $(x+5)(x-2)$ were met in the package on brackets. There the emphasis was on the expansion of such expressions, which in this case would be $x^{2}+3 x-10$. There are many instances when the reverse of this procedure, i.e. factorising, is required. This section begins with some simple examples.

Example 1 Factorise the following expressions.

$$
\text { (a) } 7 x-x^{2}, \quad \text { (b) } 2 a b x+2 a b^{2}+2 a^{2} b \text {. }
$$

Solution
(a) This is easy since $7 x-x^{2}=x(7-x)$.
(b) In this case the largest common factor is $2 a b$ so

$$
2 a b x+2 a b^{2}+2 a^{2} b=2 a b(x+b+a) .
$$

On the next page are some exercises for you to try.

Exercise 1. Factorise each of the following expressions as far as possible. (Click on green letters for solutions.)
(a) $x^{2}+3 x$
(b) $x^{2}-6 x$
(c) $x^{2} y+y^{3}+z^{2} y$
(d) $2 a x^{2} y-4 a x^{2} z$
(e) $2 a^{3} b+5 a^{2} b^{2}$
(f) $a y x+y x^{3}-2 y^{2} x^{2}$

Quiz Which of the expressions below is the full factorisation of

$$
16 a-2 a^{2} ?
$$

(a) $a(16-2 a)$
(b) $2(8-2 a)$
(c) $2 a(8-a)$
(d) $2 a(4-2 a)$

Quiz Which of the following is the full factorisation of the expression

$$
a b^{2} c-a^{2} b c^{3}+2 a b c^{2} ?
$$

(a) $a b c\left(b-a c^{2}+2 c\right)$
(b) $a b^{2}\left(c-a c^{3}+a c\right) 2$
(c) $a c\left(b^{2}-a b c^{2}+2 b c\right)$
(d) $b^{2} c\left(a-a b c^{2}+a c\right)$

2. Further Expressions

Each of the previous expressions may be factored in a single operation. Many examples require more than one such operation. On the following page you will find some worked examples of this type.
Example 2 Factorise the expressions below as far as possible.

$$
\text { (a) } a x+a y+b x+b y, \quad \text { (b) } 6 a x-3 b x+2 a y-b y \text {. }
$$

Solution

(a) Note that a is a factor of the first two terms, and b is a factor of the second two. Thus

$$
a x+a y+b x+b y=a(x+y)+b(x+y)
$$

The expression in this form consists of a sum of two terms, each of which has the common factor $(x+y)$ so it may be further factorised. Thus

$$
\begin{aligned}
a x+a y+b x+b y & =a(x+y)+b(x+y) \\
& =(a+b)(x+y)
\end{aligned}
$$

(b) Here $3 x$ is a factor of the first two terms and y is a factor of the second two. Thus

$$
\begin{aligned}
6 a x-3 b x+2 a y-b y & =3 x(2 a-b)+y(2 a-b) \\
& =(3 x+y)(2 a-b),
\end{aligned}
$$

taking out $(2 a-b)$ as a common factor.
Exercise 2. Factorise each of the following as fully as possible. (Click on green letters for solution.)
(a) $x b+x c+y b+y c$
(b) $a h-a k+b h-b k$
(c) $h s+h t+k s+k t$
(d) $2 m h-2 m k+n h-n k$
(e) $6 a x+2 b x+3 a y+b y$
(f) $m s+2 m t^{2}-n s-2 n t^{2}$

Quiz Which of the following is the factorisation of the expression

$$
2 a x-6 a y-b x+3 b y ?
$$

(a) $(2 a+b)(x+3 y)$
(b) $(2 a-b)(x-3 y)$
(c) $(2 a+b)(x-3 y)$
(d) $(2 a-b)(x+3 y)$

3. Quadratic Expressions

A quadratic expression is one of the form $a x^{2}+b x+c$, with a, b, c being some numbers. When faced with a quadratic expression it is often, but not always, possible to factorise it by inspection. To get some insight into how this is done it is worthwhile looking at how such an expression is formed.
Suppose that a quadratic expression can be factored into two linear terms, say $(x+d)$ and $(x+e)$, where d, e are two numbers. Then the quadratic is

$$
\begin{aligned}
(x+d)(x+e) & =x^{2}+x e+x d+d e, \\
& =x^{2}+(e+d) x+d e, \\
& =x^{2}+(d+e) x+d e .
\end{aligned}
$$

Notice how it is formed. The coefficient of x is $(d+e)$, which is the sum of the two numbers in the linear terms $(x+d)$ and $(x+e)$. The final term, the one without an x, is the product of those two numbers. This is the information which is used to factorise by inspection.

Example 3 Factorise the following expressions.

$$
\text { (a) } x^{2}+8 x+7, \quad \text { (b) } y^{2}+2 y-15
$$

Solution
(a) The only possible factors of 7 are 1 and 7 , and these do add up to 8 , so

$$
x^{2}+8 x+7=(x+7)(x+1)
$$

Checking this (see the package on Brackets for FOIL):

$$
\begin{aligned}
(x+7)(x+1) & =\stackrel{\mathrm{F}}{x^{2}}+\underset{\mathrm{O}}{\mathrm{O}} \cdot 1+\mathrm{x}^{\mathrm{I}} .7+\mathrm{I}_{\mathrm{L}}^{\mathrm{L}} 1 \\
& =x^{2}+8 x+7 .
\end{aligned}
$$

(b) Here the term independent of x (i.e. the one without an x) is negative, so the two numbers must be opposite in sign. The obvious contenders are 3 and -5 , or -3 and 5 . The first pair can be ruled out as their sum is -2 . The second pair sum to +2 , which is the correct coefficient for x. Thus

$$
y^{2}+2 y-15=(y-3)(y+5) .
$$

Section 3: Quadratic Expressions

Here are some examples for you to try.
Exercise 3. Factorise the following into linear factors. (Click on green letters for solution.)
(a) $x^{2}+7 x+10$
(b) $x^{2}+7 x+12$
(c) $y^{2}+11 y+24$
(d) $y^{2}-10 y+24$
(e) $z^{2}-3 z-10$
(f) $a^{2}-8 a+16$

Quiz Which of the following is the factorisation of the expression

$$
z^{2}-6 z+8 ?
$$

(a) $(z-1)(z+8)$
(b) $(z-1)(z-8)$
(c) $(z-2)(z+4)$
(d) $(z-2)(z-4)$

4. Quiz on Factorisation

Begin Quiz Factorise each of the following and choose the solution from the options given.
1.

$$
2 a^{2} e-5 a e^{2}+a^{3} e^{2}
$$

(a) $a e\left(2 a-5 e+a^{2} e\right)$
(b) $a^{2} e(2 a-5 e+a e)$
(c) $a e\left(2 a-5 e^{2}+a^{2} e^{2}\right)$
(d) $a^{2} e\left(2-5 e+a^{2} e^{2}\right)$
2.

$$
6 a x-3 b x+2 a y-b y
$$

(a) $(3 x-y)(2 a+b)$
(b) $(3 x+y)(2 a-b)$
(c) $(3 x-y)(2 a-b)$
(d) $(3 x+y)(2 a+b)$
3.

$$
z^{2}-26 z+165
$$

(a) $(z+11)(z+15)$
(b) $(z-11)(z-15)$
(c) $(z-55)(z-3)$
(d) $(z+55)(z-3)$

End Quiz Score:
Correct

Solutions to Exercises

Exercise 1(a) The only common factor of the two terms is x so

$$
x^{2}+3 x=x(x+3) .
$$

Click on green square to return

Solutions to Exercises

Exercise 1(b) Again the two terms in the expression have only the common factor x, so

$$
x^{2}-6 x=x(x-6) .
$$

Click on green square to return

Solutions to Exercises

Exercise 1(c) Here the only common factor is y so

$$
x^{2} y+y^{3}+z^{2} y=y\left(x^{2}+y^{2}+z^{2}\right) .
$$

Click on green square to return

Solutions to Exercises
Exercise 1(d) In this case the largest common factor is $2 a x^{2}$, so

$$
2 a x^{2} y-4 a x^{2} z=2 a x^{2}(y-2 z)
$$

Click on green square to return

Solutions to Exercises

Exercise 1(e)
Here the largest common factor is $a^{2} b$, so this factorises as

$$
2 a^{3} b+5 a^{2} b^{2}=a^{2} b(2 a+5 b)
$$

Click on green square to return

Solutions to Exercises

Exercise 1(f) The largest common factor is $x y$ so

$$
a y x+y x^{3}-2 y^{2} x^{2}=x y\left(a+x^{2}-2 x y\right) .
$$

Click on green square to return

Exercise 2(a) We proceed as follows:

$$
\begin{aligned}
x b+x c+y b+y c & =x(b+c)+y(b+c) \\
& =(x+y)(b+c) .
\end{aligned}
$$

Click on green square to return

Solutions to Exercises
Exercise 2(b)

$$
\begin{aligned}
a h-a k+b h-b k & =a(h-k)+b(h-k) \\
& =(a+b)(h-k)
\end{aligned}
$$

Click on green square to return

Solutions to Exercises

Exercise 2(c)

$$
\begin{aligned}
h s+h t+k s+k t & =h(s+t)+k(s+t) \\
& =(h+k)(s+t)
\end{aligned}
$$

Click on green square to return

Solutions to Exercises

Exercise 2(d)

$$
\begin{aligned}
2 m h-2 m k+n h-n k & =2 m(h-k)+n(h-k) \\
& =(2 m+n)(h-k)
\end{aligned}
$$

Click on green square to return

Solutions to Exercises

Exercise 2(e)

$$
\begin{aligned}
6 a x+2 b x+3 a y+b y & =2 x(3 a+b)+y(3 a+b) \\
& =(2 x+y)(3 a+b)
\end{aligned}
$$

Click on green square to return

Solutions to Exercises

Exercise 2(f)

$$
\begin{aligned}
m s+2 m t^{2}-n s-2 n t^{2} & =m\left(s+2 t^{2}\right)-n\left(s+2 t^{2}\right)\left(s+2 t^{2}\right) \\
& =(m-n)\left(s+2 t^{2}\right)
\end{aligned}
$$

Click on green square to return

Exercise 3(a)

Since 10 has the factors 5 and 2, and their sum is 7,

$$
\begin{aligned}
(x+5)(x+2) & =x^{2}+2 x+5 x+10 \\
& =x^{2}+7 x+10
\end{aligned}
$$

Click on green square to return

Exercise 3(b)

Here there are several ways of factorising 12 but on closer inspection the only factors that work are 4 and 3 . This leads to the following

$$
\begin{aligned}
(x+4)(x+3) & =x^{2}+3 x+4 x+12 \\
& =x^{2}+7 x+12 .
\end{aligned}
$$

Click on green square to return

Exercise 3(c)

There are several different possible factors for 24 but only one pair, 8 and 3 add up to 11 . Thus

$$
\begin{aligned}
(y+8)(y+3) & =y^{2}+3 y+8 y+24 \\
& =y^{2}+11 y+24
\end{aligned}
$$

Click on green square to return

Exercise 3(d)

There are several different possible factors for 24 but only one pair, 6 and 4 add up to 10 . Since the coefficient of y is negative, and the constant term is positive, the required numbers this time are -6 and -4 . Thus

$$
\begin{aligned}
(y-6)(y-4) & =y^{2}-4 y-6 y+(-6)(-4) \\
& =y^{2}-10 y+24
\end{aligned}
$$

Click on green square to return

Exercise 3(e) The constant term in this case is negative. Since this is the product of the numbers required, they must have opposite signs, i.e. one is positive and one negative. In that case, the number in front of the x must be the difference of these two numbers. On inspection, 5 and 2 have product 10 and difference 3 . Since the x term is negative, the larger number must be negative.

$$
\begin{aligned}
(z-5)(z+2) & =z^{2}+2 z-5 z+(-5 \times 2) \\
& =z^{2}-3 z-10
\end{aligned}
$$

Exercise 3(f)

This is an example of a perfect square. These are mentioned in the package on Brackets. The factors of 16 in this case are -4 and -4 .

$$
\begin{aligned}
(a-4)^{2} & =(a-4)(a-4) \\
& =a^{2}-4 a-4 a+(-4) \times(-4) \\
& =a^{2}-8 a+16
\end{aligned}
$$

Click on green square to return

Solutions to Quizzes

Solution to Quiz: Here 2 is a factor of both terms, but so is a, so the largest common factor is $2 a$. Thus

$$
16 a-2 a^{2}=2 a(8-a)
$$

End Quiz

Solution to Quiz:

The largest common factor in this case is $a \times b \times c=a b c$. Thus

$$
\begin{aligned}
a b^{2} c-a^{2} b c^{3}+2 a b c^{2} & =(a b c \times b)-\left(a b c \times a c^{2}\right)+(a b c \times 2 c) \\
& =a b c\left(b-a c^{2}+2 c\right)
\end{aligned}
$$

Solution to Quiz: Noting that $2 a$ is a factor of the first two terms and $-b$ is a factor of the second two, we have

$$
\begin{aligned}
2 a x-6 a y-b x+3 b y & =2 a(x-3 y)-b(x-3 y) \\
& =(2 a-b)(x-3 y)
\end{aligned}
$$

Solution to Quiz: Here the two numbers have product 8, so a possible choice is 2 and 4 . However their sum in this case is 6 , whereas the sum required is -6 . Taking the pair to be -2 and -4 will give the same product, +8 , but with the correct sum. Thus

$$
z^{2}-6 z+8=(z-4)(z-2),
$$

and this can be checked by expanding the brackets.

